Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 79
Filter
1.
Front Microbiol ; 15: 1355872, 2024.
Article in English | MEDLINE | ID: mdl-38533334

ABSTRACT

Francisella tularensis secretes tubular outer membrane vesicles (OMVs) that contain a number of immunoreactive proteins as well as virulence factors. We have reported previously that isolated Francisella OMVs enter macrophages, cumulate inside, and induce a strong pro-inflammatory response. In the current article, we present that OMVs treatment of macrophages also enhances phagocytosis of the bacteria and suppresses their intracellular replication. On the other hand, the subsequent infection with Francisella is able to revert to some extent the strong pro-inflammatory effect induced by OMVs in macrophages. Being derived from the bacterial surface, isolated OMVs may be considered a "non-viable mixture of Francisella antigens" and as such, they present a promising protective material. Immunization of mice with OMVs isolated from a virulent F. tularensis subsp. holarctica strain FSC200 prolonged the survival time but did not fully protect against the infection with a lethal dose of the parent strain. However, the sera of the immunized animals revealed unambiguous cytokine and antibody responses and proved to recognize a set of well-known Francisella immunoreactive proteins. For these reasons, Francisella OMVs present an interesting material for future protective studies.

2.
J Proteome Res ; 23(3): 971-984, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38363107

ABSTRACT

Determination of the prognosis and treatment outcomes of dilated cardiomyopathy is a serious problem due to the lack of valid specific protein markers. Using in-depth proteome discovery analysis, we compared 49 plasma samples from patients suffering from dilated cardiomyopathy with plasma samples from their healthy counterparts. In total, we identified 97 proteins exhibiting statistically significant dysregulation in diseased plasma samples. The functional enrichment analysis of differentially expressed proteins uncovered dysregulation in biological processes like inflammatory response, wound healing, complement cascade, blood coagulation, and lipid metabolism in dilated cardiomyopathy patients. The same proteome approach was employed in order to find protein markers whose expression differs between the patients well-responding to therapy and nonresponders. In this case, 45 plasma proteins revealed statistically significant different expression between these two groups. Of them, fructose-1,6-bisphosphate aldolase seems to be a promising biomarker candidate because it accumulates in plasma samples obtained from patients with insufficient treatment response and with worse or fatal outcome. Data are available via ProteomeXchange with the identifier PXD046288.


Subject(s)
Cardiomyopathy, Dilated , Humans , Cardiomyopathy, Dilated/therapy , Proteome/genetics , Proteomics , Biomarkers , Blood Coagulation
3.
Front Immunol ; 14: 1252827, 2023.
Article in English | MEDLINE | ID: mdl-37841261

ABSTRACT

Francisella tularensis influences several host molecular/signaling pathways during infection. Ubiquitination and deubiquitination are among the most important regulatory mechanisms and respectively occur through attachment or removal of the ubiquitin molecule. The process is necessary not only to mark molecules for degradation, but also, for example, to the activation of signaling pathways leading to pro-inflammatory host response. Many intracellular pathogens, including Francisella tularensis, have evolved mechanisms of modifying such host immune responses to escape degradation. Here, we describe that F. tularensis interferes with the host's ubiquitination system. We show increased total activity of deubiquitinating enzymes (DUBs) in human macrophages after infection, while confirm reduced enzymatic activities of two specific DUBs (USP10 and UCH-L5), and demonstrate increased activity of USP25. We further reveal the enrichment of these three enzymes in exosomes derived from F. tularensis-infected cells. The obtained results show the regulatory effect on ubiquitination mechanism in macrophages during F. tularensis infection.


Subject(s)
Francisella tularensis , Gram-Negative Bacterial Infections , Humans , Macrophages , Gram-Negative Bacterial Infections/metabolism , Signal Transduction , Deubiquitinating Enzymes/metabolism , Ubiquitin Thiolesterase/metabolism
4.
Cells ; 12(4)2023 02 13.
Article in English | MEDLINE | ID: mdl-36831274

ABSTRACT

Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is known for its multifunctionality in several pathogenic bacteria. Our previously reported data suggest that the GAPDH homologue of Francisella tularensis, GapA, might also be involved in other processes beyond metabolism. In the present study, we explored GapA's potential implication in pathogenic processes at the host cell level. Using immunoelectron microscopy, we demonstrated the localization of this bacterial protein inside infected macrophages and its peripheral distribution in bacterial cells increasing with infection time. A quantitative proteomic approach based on stable isotope labeling of amino acids in cell culture (SILAC) combined with pull-down assay enabled the identification of several of GapA's potential interacting partners within the host cell proteome. Two of these partners were further confirmed by alternative methods. We also investigated the impact of gapA deletion on the transcription of selected cytokine genes and the activation of the main signaling pathways. Our results show that ∆gapA-induced transcription of genes encoding several cytokines whose expressions were not affected in cells infected with a fully virulent wild-type strain. That might be caused, at least in part, by the detected differences in ERK/MAPK signaling activation. The experimental observations together demonstrate that the F. tularensis GAPDH homologue is directly implicated in multiple host cellular processes and, thereby, that it participates in several molecular mechanisms of pathogenesis.


Subject(s)
Francisella tularensis , Francisella tularensis/genetics , Francisella tularensis/metabolism , Cytokines/metabolism , Proteomics , Virulence/genetics , Glyceraldehyde-3-Phosphate Dehydrogenases/genetics , Glyceraldehyde-3-Phosphate Dehydrogenases/metabolism , Gene Expression
5.
Microbiol Res ; 269: 127300, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36641863

ABSTRACT

Francisella tularensis is a highly infectious Gram-negative coccobacillus which causes the disease tularemia. The potential for its misuse as a biological weapon has led disease control and prevention centers to classify this bacterium as a category A agent. Bacterial outer membrane vesicles (OMVs) are spherical particles 20-250 nm in size produced by all Gram-negative bacteria and constitute one of the major secretory pathways. Bacteria use them in interacting with both other bacterial cells and eukaryotic (host) cells. OMVs of Francisella contain number of its so far described virulence factors and immunomodulatory proteins. Their role in host-pathogen interactions can therefore be presumed, and the possibility exists also for their potential use in a subunit vaccine. Moreover, Francisella microbes produce both usual spherical and unusual tubular OMVs. Because OMVs emerge from the outermost surface of the bacterial cell, we focused on the secretion of OMVs in several mutant Francisella strains with disrupted surface structures (namely the O-antigen). O-antigen in Francisella is not only the structural component of LPS but also forms another important virulence factor: the O-antigen polysaccharide capsule. Mutant strain phenotypes were evaluated by growth curves, vesiculation rates, their sensitivity to the complement contained in serum, and proliferation inside murine bone marrow macrophages. Morphologies of both OMVs and the bacteria were visualized by electron microscopy. The O-antigen mutant strains were considerably attenuated in serum resistance and intracellular proliferation. All the strains showed lower ability to form the tubular OMVs. Some strains formed tubular protrusions from their outer membrane but their stability was weak. Some hypervesiculating strains were revealed that will serve as source of OMVs for further studies of their protective potential. Our results suggest the presence of LPS and the O-antigen capsule on the surface of Francisella to be critical not only for its virulence but also for the exceptional tubular shape of its OMVs.


Subject(s)
Francisella tularensis , Tularemia , Animals , Mice , Francisella tularensis/genetics , O Antigens , Lipopolysaccharides/chemistry , Tularemia/microbiology , Tularemia/prevention & control , Gram-Negative Bacteria , Bacterial Outer Membrane Proteins/genetics , Bacterial Outer Membrane Proteins/metabolism
6.
Nanomaterials (Basel) ; 12(9)2022 May 07.
Article in English | MEDLINE | ID: mdl-35564303

ABSTRACT

Four different graphene-based temperature sensors were prepared, and their temperature and humidity dependences were tested. Sensor active layers prepared from reduced graphene oxide (rGO) and graphene nanoplatelets (Gnp) were deposited on the substrate from a dispersion by air brush spray coating. Another sensor layer was made by graphene growth from a plasma discharge (Gpl). The last graphene layer was prepared by chemical vapor deposition (Gcvd) and then transferred onto the substrate. The structures of rGO, Gnp, and Gpl were studied by scanning electron microscopy. The obtained results confirmed the different structures of these materials. Energy-dispersive X-ray diffraction was used to determine the elemental composition of the materials. Gcvd was characterized by X-ray photoelectron spectroscopy. Elemental analysis showed different oxygen contents in the structures of the materials. Sensors with a small flake structure, i.e., rGO and Gnp, showed the highest change in resistance as a function of temperature. The temperature coefficient of resistance was 5.16-3·K-1 for Gnp and 4.86-3·K-1 for rGO. These values exceed that for a standard platinum thermistor. The Gpl and Gcvd sensors showed the least dependence on relative humidity, which is attributable to the number of oxygen groups in their structures.

7.
Front Microbiol ; 12: 748706, 2021.
Article in English | MEDLINE | ID: mdl-34721352

ABSTRACT

Francisella tularensis is known to release unusually shaped tubular outer membrane vesicles (OMV) containing a number of previously identified virulence factors and immunomodulatory proteins. In this study, we present that OMV isolated from the F. tularensis subsp. holarctica strain FSC200 enter readily into primary bone marrow-derived macrophages (BMDM) and seem to reside in structures resembling late endosomes in the later intervals. The isolated OMV enter BMDM generally via macropinocytosis and clathrin-dependent endocytosis, with a minor role played by lipid raft-dependent endocytosis. OMVs proved to be non-toxic and had no negative impact on the viability of BMDM. Unlike the parent bacterium itself, isolated OMV induced massive and dose-dependent proinflammatory responses in BMDM. Using transmission electron microscopy, we also evaluated OMV release from the bacterial surface during several stages of the interaction of Francisella with BMDM. During adherence and the early phase of the uptake of bacteria, we observed numerous tubular OMV-like protrusions bulging from the bacteria in close proximity to the macrophage plasma membrane. This suggests a possible role of OMV in the entry of bacteria into host cells. On the contrary, the OMV release from the bacterial surface during its cytosolic phase was negligible. We propose that OMV play some role in the extracellular phase of the interaction of Francisella with the host and that they are involved in the entry mechanism of the bacteria into macrophages.

8.
Microorganisms ; 9(3)2021 Mar 19.
Article in English | MEDLINE | ID: mdl-33808578

ABSTRACT

Ubiquitination of proteins, like phosphorylation and acetylation, is an important regulatory aspect influencing numerous and various cell processes, such as immune response signaling and autophagy. The study of ubiquitination has become essential to learning about host-pathogen interactions, and a better understanding of the detailed mechanisms through which pathogens affect ubiquitination processes in host cell will contribute to vaccine development and effective treatment of diseases. Pathogenic bacteria (e.g., Salmonella enterica, Legionella pneumophila and Shigella flexneri) encode many effector proteins, such as deubiquitinating enzymes (DUBs), targeting the host ubiquitin machinery and thus disrupting pertinent ubiquitin-dependent anti-bacterial response. We focus here upon the host ubiquitination system as an integral unit, its interconnection with the regulation of inflammation and autophagy, and primarily while examining pathogens manipulating the host ubiquitination system. Many bacterial effector proteins have already been described as being translocated into the host cell, where they directly regulate host defense processes. Due to their importance in pathogenic bacteria progression within the host, they are regarded as virulence factors essential for bacterial evasion. However, in some cases (e.g., Francisella tularensis) the host ubiquitination system is influenced by bacterial infection, although the responsible bacterial effectors are still unknown.

9.
Plasmid ; 115: 102564, 2021 05.
Article in English | MEDLINE | ID: mdl-33610608

ABSTRACT

Francisella tularensis is a Gram-negative intracellular pathogen causing tularemia. A number of its potential virulence factors have been identified, but their biology and functions are not precisely known. Understanding the biological and immunological functions of these proteins requires adequate genetic tools for homologous and heterologous expression of cloned genes, maintaining both original structure and post-translational modifications. Here, we report the construction of a new multipurpose shuttle plasmid - pEVbr - which can be used for high-level expression in F. tularensis. The pEVbr plasmid has been constructed by modifying the TetR-regulated expression vector pEDL17 (LoVullo, 2012) that includes (i) a strong F. tularensis bfr promoter, and (ii) two tet operator sequences cloned into the promoter. The cloned green fluorescent protein (GFP), used as a reporter, demonstrated almost undetectable basal expression level under uninduced conditions and a highly dynamic dose-dependent response to the inducer. The utility of the system was further confirmed by cloning the gapA and FTT_1676 genes into the pEVbr vector and quantifying proteins expression in F. tularensis LVS, as well as by studying post-translational modification of the cloned genes. This study demonstrates that high levels of recombinant native-like Francisella proteins can be produced in Francisella cells. Hence, this system may be beneficial for the analysis of protein function and the development of new treatments and vaccines.


Subject(s)
Francisella tularensis , Tularemia , Francisella tularensis/genetics , Humans , Plasmids/genetics , Recombinant Proteins/genetics , Tetracycline/pharmacology
10.
J Proteome Res ; 20(3): 1716-1732, 2021 03 05.
Article in English | MEDLINE | ID: mdl-33543941

ABSTRACT

Release of outer membrane vesicles (OMV) is an important phenomenon in Gram-negative bacteria playing multiple roles in their lifestyle, including in relation to virulence and host-pathogen interaction. Francisella tularensis, unlike other bacteria, releases unusually shaped, tubular OMV. We present a proteomic comparison of OMV and membrane fractions from two F. tularensis strains: moderately virulent subsp. holarctica strain FSC200 and highly virulent subsp. tularensis strain SchuS4. Proteomic comparison studies routinely evaluate samples from the same proteome, but sometimes we must compare samples from closely related organisms. This raises quantification issues. We propose a novel approach to cross-species proteomic comparison based on an intersection protein database from the individual single-species databases. This is less prone to quantification errors arising from differences in the sequences. Consecutively comparing subproteomes of OMV and membranes of the two strains allows distinguishing differences in relative protein amounts caused by global expression changes from those caused by preferential protein packing to OMV or membranes. Among the proteins most differently packed into OMV between the two strains, we detected proteins involved in biosynthesis and metabolism of bacterial envelope components like O-antigen, lipid A, phospholipids, and fatty acids, as well as some major structural outer membrane proteins. The data are available via ProteomeXchange with identifier PXD022406.


Subject(s)
Francisella tularensis , Tularemia , Bacterial Outer Membrane , Francisella , Humans , Proteome/genetics , Proteomics , Virulence
11.
Front Microbiol ; 11: 576618, 2020.
Article in English | MEDLINE | ID: mdl-33013814

ABSTRACT

Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is well known for its involvement in numerous non-metabolic processes inside mammalian cells. Alternative functions of prokaryotic GAPDH are mainly deduced from its extracellular localization ability to bind to selected host proteins. Data on its participation in intracellular bacterial processes are scarce as there has been to date only one study dealing with this issue. We previously have reported several points of evidence that the GAPDH homolog of Francisella tularensis GapA might also exert additional non-enzymatic functions. Following on from our earlier observations we decided to identify GapA's interacting partners within the bacterial proteome to explore its new roles at intracellular level. The quantitative proteomics approach based on stable isotope labeling of amino acids in cell culture (SILAC) in combination with affinity purification mass spectrometry enabled us to identify 18 proteins potentially interacting with GapA. Six of those interactions were further confirmed by alternative methods. Half of the identified proteins were involved in non-metabolic processes. Further analysis together with quantitative label-free comparative analysis of proteomes isolated from the wild-type strain strain with deleted gapA gene suggests that GapA is implicated in DNA repair processes. Absence of GapA promotes secretion of its most potent interaction partner the hypothetical protein with peptidase propeptide domain (PepSY) thereby indicating that it impacts on subcellular distribution of some proteins.

12.
Microorganisms ; 8(10)2020 Oct 21.
Article in English | MEDLINE | ID: mdl-33096715

ABSTRACT

Regulation of gene transcription is the initial step in the complex process that controls gene expression within bacteria. Transcriptional control involves the joint effort of RNA polymerases and numerous other regulatory factors. Whether global or local, positive or negative, regulators play an essential role in the bacterial cell. For instance, some regulators specifically modify the transcription of virulence genes, thereby being indispensable to pathogenic bacteria. Here, we provide a comprehensive overview of important transcription factors and DNA-binding proteins described for the virulent bacterium Francisella tularensis, the causative agent of tularemia. This is an unexplored research area, and the poorly described networks of transcription factors merit additional experimental studies to help elucidate the molecular mechanisms of pathogenesis in this bacterium, and how they contribute to disease.

13.
Sci Rep ; 10(1): 14612, 2020 09 03.
Article in English | MEDLINE | ID: mdl-32884055

ABSTRACT

Francisella tularensis is a highly virulent intracellular bacterium and the causative agent of tularemia. The disease is characterized by the suboptimal innate immune response and consequently by the impaired adaptive immunity. The virulence of this pathogen depends on proteins encoded by a genomic island termed the Francisella Pathogenicity Island (FPI). However, the precise biological roles of most of the FPI-encoded proteins remain to be clarified. In this study, we employed stable isotope labeling by amino acids in cell culture (SILAC) in combination with affinity protein purification coupled with liquid chromatography-mass spectrometry to identify potential protein-effector binding pairs for two FPI virulence effectors IglJ and VgrG. Our results may indicate that while the IglJ protein interactions primarily affect mitochondria, the VgrG interactions affect phagosome and/or autophagosome biogenesis via targeting components of the host's exocyst complex.


Subject(s)
Bacterial Proteins/metabolism , Francisella tularensis/metabolism , Gene Expression Regulation, Bacterial , Genomic Islands , Tularemia/microbiology , Adaptive Immunity/physiology , Immunity, Innate/physiology , Mass Spectrometry , Proteomics , Virulence
14.
Article in English | MEDLINE | ID: mdl-32195198

ABSTRACT

Bacterial proteins exhibiting two or more unrelated functions, referred to as moonlighting proteins, are suggested to contribute to full virulence manifestation in pathogens. An expanding number of published studies have revealed the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) to be a multitasking protein with virulence impact in a number of pathogenic bacteria. This protein can be detected on the bacterial surface or outside the bacterial cell, where it interacts with host proteins. In this way, GAPDH is able to modulate various pathogenic processes. Moreover, it has been shown to be involved in non-enzymatic processes inside the bacterial cell. In this mini review, we summarize main findings concerning the multiple localization and protein interactions of GAPDH derived from bacterial pathogens of humans. We also briefly discuss problems associated with using GAPDH as a vaccine antigen and endeavor to inspire further research to fill gaps in the existing knowledge.


Subject(s)
Bacteria/enzymology , Bacteria/pathogenicity , Bacterial Proteins/metabolism , Glyceraldehyde-3-Phosphate Dehydrogenases/metabolism , Proteins/metabolism , Bacterial Infections/microbiology , Bacterial Infections/prevention & control , Bacterial Vaccines/immunology , Glyceraldehyde-3-Phosphate Dehydrogenases/immunology , Humans , Protein Binding , Virulence
15.
Front Microbiol ; 10: 2304, 2019.
Article in English | MEDLINE | ID: mdl-31649645

ABSTRACT

Francisella tularensis is a Gram-negative, facultative intracellular bacterium, causing a severe disease called tularemia. It secretes unusually shaped nanotubular outer membrane vesicles (OMV) loaded with a number of virulence factors and immunoreactive proteins. In the present study, the vesicles were purified from a clinical isolate of subsp. holarctica strain FSC200. We here provide a comprehensive proteomic characterization of OMV using a novel approach in which a comparison of OMV and membrane fraction is performed in order to find proteins selectively enriched in OMV vs. membrane. Only these proteins were further considered to be really involved in the OMV function and/or their exceptional structure. OMV were also isolated from bacteria cultured under various cultivation conditions simulating the diverse environments of F. tularensis life cycle. These included conditions mimicking the milieu inside the mammalian host during inflammation: oxidative stress, low pH, and high temperature (42°C); and in contrast, low temperature (25°C). We observed several-fold increase in vesiculation rate and significant protein cargo changes for high temperature and low pH. Further proteomic characterization of stress-derived OMV gave us an insight how the bacterium responds to the hostile environment of a mammalian host through the release of differentially loaded OMV. Among the proteins preferentially and selectively packed into OMV during stressful cultivations, the previously described virulence factors connected to the unique intracellular trafficking of Francisella were detected. Considerable changes were also observed in a number of proteins involved in the biosynthesis and metabolism of the bacterial envelope components like O-antigen, lipid A, phospholipids, and fatty acids. Data are available via ProteomeXchange with identifier PXD013074.

16.
Article in English | MEDLINE | ID: mdl-31134164

ABSTRACT

Nucleoid-associated proteins belong to a group of small but abundant proteins in bacterial cells. These transcription regulators are responsible for many important cellular processes and also are involved in pathogenesis of bacteria. The best-known nucleoid-associated proteins, such as HU, FIS, H-NS, and IHF, are often discussed. The most important findings in research concerning HU protein are described in this mini review. Its roles in DNA compaction, shape modulation, and negative supercoiling induction have been studied intensively. HU protein regulates bacteria survival, growth, SOS response, virulence genes expression, cell division, and many other cell processes. Elucidating the mechanism of HU protein action has been the subject of many research projects. This mini review provides a comprehensive overview of the HU protein.


Subject(s)
Bacterial Proteins/metabolism , DNA-Binding Proteins/metabolism , Gene Expression Regulation, Bacterial/physiology , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , DNA/chemistry , DNA, Bacterial/metabolism , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/genetics , Protein Binding , Protein Processing, Post-Translational , Virulence/genetics , Virulence/physiology
17.
mSphere ; 4(2)2019 03 27.
Article in English | MEDLINE | ID: mdl-30918060

ABSTRACT

Although the role of high-risk human papillomaviruses (hrHPVs) as etiological agents in cancer development has been intensively studied during the last decades, there is still the necessity of understanding the impact of the HPV E6 and E7 oncogenes on host cells, ultimately leading to malignant transformation. Here, we used newly established immortalized human keratinocytes with a well-defined HPV16 E6E7 expression cassette to get a more complete and less biased overview of global changes induced by HPV16 by employing transcriptome sequencing (RNA-Seq) and stable isotope labeling by amino acids in cell culture (SILAC). This is the first study combining transcriptome and proteome data to characterize the impact of HPV oncogenes in human keratinocytes in comparison with their virus-negative counterparts. To enhance the informative value and accuracy of the RNA-Seq data, four different bioinformatic workflows were used. We identified potential novel upstream regulators (e.g., CNOT7, SPDEF, MITF, and PAX5) controlling distinct clusters of genes within the HPV-host cell network as well as distinct factors (e.g., CPPED1, LCP1, and TAGLN) with essential functions in cancer. Validated results in this study were compared to data sets from The Cancer Genome Atlas (TCGA), demonstrating that several identified factors were also differentially expressed in cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC) and HPV-positive head and neck squamous cell carcinomas (HNSCs). This highly integrative approach allows the identification of novel HPV-induced cellular changes that are also reflected in cancer patients, providing a promising omics data set for future studies in both basic and translational research.IMPORTANCE Human papillomavirus (HPV)-associated cancers still remain a big health problem, especially in developing countries, despite the availability of prophylactic vaccines. Although HPV oncogenes have been intensively investigated for decades, a study applying recent advances in RNA-Seq and quantitative proteomic approaches to a precancerous model system with well-defined HPV oncogene expression alongside HPV-negative parental cells has been missing until now. Here, combined omics analyses reveal global changes caused by the viral oncogenes in a less biased way and allow the identification of novel factors and key cellular networks potentially promoting malignant transformation. In addition, this system also provides a basis for mechanistic research on novel key factors regulated by HPV oncogenes, especially those that are confirmed in vivo in cervical cancer as well as in head and neck cancer patient samples from TCGA data sets.


Subject(s)
Carcinogenesis/genetics , Gene Regulatory Networks , Keratinocytes/virology , Oncogene Proteins, Viral/genetics , Proteome/genetics , Transcriptome , Adenocarcinoma/genetics , Adenocarcinoma/virology , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/virology , Cell Transformation, Neoplastic , Computational Biology , Female , Gene Expression Profiling , High-Throughput Nucleotide Sequencing , Human papillomavirus 16/genetics , Humans , Proteomics , Squamous Cell Carcinoma of Head and Neck/genetics , Squamous Cell Carcinoma of Head and Neck/virology , Uterine Cervical Neoplasms/genetics , Uterine Cervical Neoplasms/virology
18.
Article in English | MEDLINE | ID: mdl-29692981

ABSTRACT

D-alanyl-D-alanine carboxypeptidase, product of dacD gene in Francisella, belongs to penicillin binding proteins (PBPs) and is involved in remodeling of newly synthetized peptidoglycan. In E. coli, PBPs are synthetized in various growth phases and they are able to substitute each other to a certain extent. The DacD protein was found to be accumulated in fraction enriched in membrane proteins from severely attenuated dsbA deletion mutant strain. It has been presumed that the DsbA is not a virulence factor by itself but that its substrates, whose correct folding and topology are dependent on the DsbA oxidoreductase and/or isomerase activities, are the primary virulence factors. Here we demonstrate that Francisella DacD is required for intracellular replication and virulence in mice. The dacD insertion mutant strain showed higher sensitivity to acidic pH, high temperature and high osmolarity when compared to the wild-type. Eventually, transmission electron microscopy revealed differences in mutant bacteria in both the size and defects in outer membrane underlying its SDS and serum sensitivity. Taken together these results suggest DacD plays an important role in Francisella pathogenicity.


Subject(s)
Cell Wall/metabolism , Francisella tularensis/growth & development , Francisella tularensis/pathogenicity , Penicillin-Binding Proteins/genetics , Peptidoglycan/biosynthesis , Serine-Type D-Ala-D-Ala Carboxypeptidase/genetics , Animals , Anti-Bacterial Agents/pharmacology , Cells, Cultured , Female , Francisella tularensis/drug effects , Mice , Mice, Inbred BALB C , Microscopy, Electron, Transmission , Penicillin-Binding Proteins/metabolism , Protein Disulfide-Isomerases/genetics , Serine-Type D-Ala-D-Ala Carboxypeptidase/metabolism , Tularemia/microbiology , Tularemia/pathology , Virulence/genetics
19.
Virulence ; 9(1): 754-770, 2018 12 31.
Article in English | MEDLINE | ID: mdl-29473442

ABSTRACT

The nucleoid-associated HU proteins are small abundant DNA-binding proteins in bacterial cell which play an important role in the initiation of DNA replication, cell division, SOS response, control of gene expression and recombination. HU proteins bind to double stranded DNA non-specifically, but they exhibit high affinity to abnormal DNA structures as four-way junctions, gaps or nicks, which are generated during DNA damage. In many pathogens HU proteins regulate expression of genes involved in metabolism and virulence. Here, we show that the Francisella tularensis subsp. holarctica gene locus FTS_0886 codes for functional HU protein which is essential for full Francisella virulence and its resistance to oxidative stress. Further, our results demonstrate that the recombinant FtHU protein binds to double stranded DNA and protects it against free hydroxyl radicals generated via Fenton's reaction. Eventually, using an iTRAQ approach we identified proteins levels of which are affected by the deletion of hupB, among them for example Francisella pathogenicity island (FPI) proteins. The pleiotropic role of HU protein classifies it as a potential target for the development of therapeutics against tularemia.


Subject(s)
Bacterial Proteins/metabolism , DNA-Binding Proteins/metabolism , Francisella tularensis/growth & development , Francisella tularensis/physiology , Virulence Factors/metabolism , DNA/metabolism , Gene Deletion , Gene Expression Profiling , Oxidative Stress , Protein Binding , Stress, Physiological , Virulence
20.
Mol Cell Proteomics ; 17(1): 81-94, 2018 01.
Article in English | MEDLINE | ID: mdl-29046388

ABSTRACT

Dendritic cells (DCs) infected by Francisella tularensis are poorly activated and do not undergo classical maturation process. Although reasons of such unresponsiveness are not fully understood, their impact on the priming of immunity is well appreciated. Previous attempts to explain the behavior of Francisella-infected DCs were hypothesis-driven and focused on events at later stages of infection. Here, we took an alternative unbiased approach by applying methods of global phosphoproteomics to analyze the dynamics of cell signaling in primary DCs during the first hour of infection by Francisella tularensis Presented results show that the early response of DCs to Francisella occurs in phases and that ERK and p38 signaling modules induced at the later stage are differentially regulated by virulent and attenuated ΔdsbA strain. These findings imply that the temporal orchestration of host proinflammatory pathways represents the integral part of Francisella life-cycle inside hijacked DCs.


Subject(s)
Dendritic Cells/metabolism , Extracellular Signal-Regulated MAP Kinases/metabolism , Francisella tularensis , Tularemia/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism , Animals , Cell Line , Dendritic Cells/microbiology , Female , Mice, Inbred C57BL , Phosphorylation
SELECTION OF CITATIONS
SEARCH DETAIL
...